Abstract

ABSTRACT

Objective: This study aimed to investigate the relationship between vitamin D [25(OH)] values with the language and

speech disorders in children.

Material and Methods: A total of 200 children were included in the study, comprising 124 children, with stuttering

(n=62), functional language disorder (n=40) and articulation disorder (n=22) as the patient group and a control group

of 76 healthy children. Vitamin D levels were examined in blood samples taken from both the patient group and the

control group.

Results: Serum vitamin D levels were determined as 23.68 ± 10.95 in patients with articulation disorder, 17.82 ± 8.28

in patients with functional language disorder, 23.36 ± 10.01 in patients with stuttering, and 26.01 ± 7.4 in the control

group. Serum vitamin D values were found to be statistically significantly (p<0.001) lower in children with functional

language disorder than in the healthy control group. It was observed that vitamin D decreased as the severity of the

stutter increased.

Conclusion: According to the results of this study, there can be considered to be an important connection between

vitamin D level and functional language disorder. Nevertheless, further studies are needed to confirm these findings in























children with language and speech disorders.

Keywords: Articulation disorder, Functional language disorder, Stuttering

References

  1. 1. Silverman FH.Stuttering and Other Fluency Disorders. Illinois:
  2. Waveland Press. 2004
  3. 2. Maria-Mengel MR, Martins Linhares MB. Risk factors for infant
  4. developmental problems. Rev Lat Am Enfermagem 2007;15:837–
  5. 42.
  6. 3. Samra HA, Mcgrath JM, Wehbe M. An integrated review of
  7. developmental outcomes and late-preterm birth. J Obstet Gynecol
  8. Neonatal Nurs 2011;40:399–411.
  9. 4. Hall NE. Developmental Language Disorder. Semin Pediatr Neurol
  10. 1997;4:77-85.
  11. 5. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem
  12. with health consequences. Am J Clin Nutr 2008;87:1080-6.
  13. 6. Holick MF. Vitamin D: importance in the prevention of cancers,
  14. type I diabetes, heart disease and osteoporosis. Am J Clin Nutr
  15. 2004;79:362-71.
  16. 7. Lemire JM, Archer DC. 1.25-dihydroxyvitamin D3 prevents the in vivo
  17. induction of murine experimental autoimmune encephalomyelitis. J
  18. Clin Invest 1991;87:1103-7.
  19. 8. Hanley DA, Cranney A, Jones G, Whiting SJ, Leslie WD, Cole DE,
  20. Atkinson SA, Josse RG, Feldman S, Kline GA, Rosen C. Vitamin D
  21. in adult health and disease: a review and guideline statement from
  22. Osteoporosis Canada. CMAJ 2010;182:610-8.
  23. 9. Kiraly SJ, Kiraly MA, Hawe RD, Makhani N. Vitamin D as
  24. a Neuroactive Substance:Review. Scientific World Journal
  25. 2006;26;125-139.
  26. 10. Sutherland MK, Wong L, Somerville MJ, Yoong LK, Bergeron C,
  27. Parmentier M, et al. Reduction of calbindin-24k mRNA levels in
  28. Alzheimer as compared to Huntington hippocampus. Brain Res
  29. Mol Brain Res 1993;18:32-42.
  30. 11. Schoenrock SA, Tarantino LM. Developmental vitamin D deficiency
  31. and schizophrenia: the role of animal models. Genes Brain Behav
  32. 2016;15:45-61.
  33. 12. McGrath J, Eyles D, Mowry B, Yolken R, Buka S. Low maternal
  34. vitamin D as a risk factor for schizophrenia:a pilot study using
  35. banked sera. Schizophr Res 2003;63:73-8.
  36. 13. Przybelski RJ, Binkley NC. Is vitamin D important for preserving
  37. cognition? A positive correlation of serum 25-hydroxyvitamin D
  38. concentration with cognitive function. Arch Biochem Biophys
  39. 2007;460:202-5.
  40. 14. American Psychiatric Association. Diagnostic criteria from DSM-IVTR.
  41. Washington DC: American Psychiatric Association 2000;370-
  42. 381.
  43. 15. Luu TM, Vohr BR, Schneider KC, Katz KH, Tucker R, Allan WC,
  44. et al. Trajectories of receptive language development from 3 to 12
  45. years pf age for very preterm children. Pediatrics 2009;124;333-
  46. 41.
  47. 16. Martson L, Peacock JL, Calvert SA, Greenough A, Marlow N.
  48. Factors affecting vocabulary acquisition at age 2 in children born
  49. between 23 and 28 weeks’ gestation. Dev Med Child Neurol
  50. 2007;49:591–6.
  51. 17. Mossabeb R, Wake KC, Finnegan K, Sivieri E, Abbasi S. Language
  52. development survey provides a useful screening tool for language
  53. delay in preterm infants. Clin Pediatr (Phila) 2012;51:638-44.
  54. 18. Ouma S, Suenaga M, Bölükbaşı Hatip FF, Hatip-Al-Khatib I, Tsuboi
  55. Y, Matsunaga Y. Serum vitamin D in patients with mild cognitive
  56. impairment and Alzheimer’s disease. Brain Behav 2018;8:e00936.
  57. 19. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D.
  58. New clues about vitamin D functions in the nervous system. Trends
  59. Endocrinol Metab 2002;13:100-5.
  60. 20. Brown J, Bianco JI, McGrath JJ, Eyles DW. 1.25-Dihydroxyvitamin
  61. D3 induces nerve growth factor, promotes neurite outgrowth and
  62. inhibits mitosis in embryonic rat hippocampal neurons. Neurosci
  63. Lett 2003;343:139-43.
  64. 21. Munger KL, Zhang SM, O’Reilly E, Hernan MA, Olek MJ, Willett
  65. WC, et al. Vitamin D intake and incidence of multiple sclerosis.
  66. Neurology 2004;62;60-5.
  67. 22. Mackay-Sim A, Feron F, Eyles D, Burne T, McGrath J. 2004. Schizophrenia, vitamin D, and brain development. Int Rev Neurobiol 59:351-80.
  68. 23. Wang T, Shan L, Du L, Feng J, Xu Z, Staal WG, Jia F. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 2016;25:453-4.
  69. 24. Brookes GB. Vitamin D deficiency and deafness: 1984 update. Am J Otology 1985;6:102–7.
  70. 25. Lemire J. 1,25-Dihydroxyvitamin D3-a hormone with immunomodulatory properties. Z Rheumatol 2000;59:24-7.
  71. 26. Garcion E, Thanh XD, Bled F, Teissier E, Dehouck MP, Rigault F, Bet al. 1.25-Dihydroxyvitamin D3 regulates gamma 1 transpeptidase activity in rat brain. Neurosci Lett 1996;216;183-6.
  72. 27. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 2002;13:100-5.
  73. 28. Ludlow CL, Loucks T. Stuttering: a dynamic motor control disorder. J Fluen Disord 2003;28:273-95.
  74. 29. Pool KD, Devous MD, Freeman FJ, Watson BC, Finitzo T. Regional cerebral blood flow in developmental stutterers. Arch Neurol 1991;48:509-12.
  75. 30. Yairi E, Ambrose N. Epidemiology of stuttering: 21st century advances. J Fluency Disord 2013;38:66-87.
  76. 31. Lawrence M, Barclay DM. Stuttering: A brief review. Am Fam Physician 1998;57:2175-8.
  77. 32. Wu JC, Maguire G, Riley G, Lee A, Keator D, Tang C, Fallon J, Najafi A. Increased dopamine activity associated with stuttering, Neuroreport 1997;8:767-70.
  78. 33. Steidl L, Pesak J, Chytilova H. Stuttering and tetanic syndrome. Folia Phoniatr (Basel) 1991;43:7-12.
  79. 34. Alm PA. Copper in developmental stuttering. Folia Phoniatr Logop 2005;57:216-22.
  80. 35. Rutter MJ, Bishop D, Pine D, Scott S, Stevenson JS, Taylor EA, Thapar A. Rutter’s child and adolescent psychiatry. 5th. Hoboken (NJ): Wiley-Blackwell 2010
  81. 36. Harrison LJ, McLeod S. Risk and protective factors associated with speech and language impairment in a nationally representative sample of 4- to 5-year-old children. J Speech Lang Hear Res 2010;53:508-29.
  82. 37. Yasin A, Aksu H, Ozgür E, Ozgür BG. Speech and language delay in childhood: a retrospective chart review. ENT Updates 2017;7;22-7.

How to cite

1.
Sağıroğlu S. A Comparison of Vitamin D Levels in Chidren with Language and Speech Disorders and Healthy Children in the Turkish Population. Turk J Pediatr Dis [Internet]. 2020 Mar. 18 [cited 2025 May 25];14(2):158-63. Available from: https://turkjpediatrdis.org/article/view/708