Abstract

Pediatric rheumatic diseases (PRDs) comprise a diverse group of inflammatory disorders affecting the musculoskeletal system and connective tissues, with multifactorial etiologies involving genetic and environmental factors. Climate change driven by rising greenhouse gas emissions and global warming, has profound implications for PRDs through increased air pollution, extreme weather events, and ultraviolet radiation exposure. Children with chronic rheumatic disorders, particularly those with systemic involvement, are especially vulnerable to these environmental stressors. This review explores the association between climate change and PRDs, with a focus on juvenile idiopathic arthritis (JIA), systemic lupus erythematosus (SLE), juvenile dermatomyositis (JDM), immunoglobulin A vasculitis, Kawasaki disease, and familial Mediterranean fever (FMF).

Understanding the interplay between climate change and PRDs is crucial for developing adaptive strategies for disease management and public health interventions. Future research should focus on mitigating environmental risks and identifying protective measures to improve the outcomes of pediatric patients with rheumatic diseases.

Keywords: Air pollution, Climate change, Rheumatic diseases

References

  1. Bhattarai D. Inflammatory Diseases of the Eye, Bowel, and Bone in Children. Indian J Pediatr. 2024; 91: 1065-71. https://doi.org/10.1007/s12098-023-04877-2.
  2. Rider L, Miller F. Environmental factors in pediatric systemic autoimmune diseases. The Rheumatologist. Available from: www the-rheumatologist org/article/environmental-factors-pediatric-systemic-autoimmune-diseases. 2017.
  3. Cassidy JT, Petty RE, Laxer RM, Lindsley CB. Textbook of pediatric rheumatology E-Book. 8th edn. Elsevier Health Sciences2011.
  4. Correll CK. Role of Environment in Pediatric Rheumatic Diseases. Rheum Dis Clin North Am. 2022; 48: 287-304. https://doi.org/10.1016/j.rdc.2021.09.007.
  5. Wang CM, Jung CR, Chen WT, Hwang BF. Exposure to fine particulate matter (PM(2.5)) and pediatric rheumatic diseases. Environ Int. 2020; 138: 105602. https://doi.org/10.1016/j.envint.2020.105602.
  6. Zaripova LN, Midgley A, Christmas SE, Beresford MW, Baildam EM, Oldershaw RA. Juvenile idiopathic arthritis: from aetiopathogenesis to therapeutic approaches. Pediatr Rheumatol Online J. 2021; 19: 135. https://doi.org/10.1186/s12969-021-00629-8.
  7. Clarke SLN, Mageean KS, Maccora I,Harrison S, Simonini G, Sharp GC, et al. Moving from nature to nurture: a systematic review and meta-analysis of environmental factors associated with juvenile idiopathic arthritis. Rheumatology (Oxford). 2022; 61: 514-30. https://doi.org/10.1093/rheumatology/keab627.
  8. Berkun Y, Lewy H, Padeh S, Laron Z. Seasonality of birth of patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2015; 33: 122-6.
  9. Artunç NY, Yalçın SS. Çevresel kirleticiler ve küresel ısınma. In: Yalçın SS (ed.). A Multi-Disciplinary Analysis of Global Climate Change and its Effects From Childhood To Adult 1st edn. Türkiye Klinikleri Ankara, Türkiye, 2022; 6-12.
  10. Bush T. Potential adverse health consequences of climate change related to rheumatic diseases. J Clim Change Health. 2021; 3: 100029. https://doi.org/10.1016/j.joclim.2021.100029.
  11. Al-Mayouf SM, Al Mutairi M, Bouayed K, Habjoka S, Hadef D, Lotfy HM,et al. Epidemiology and demographics of juvenile idiopathic arthritis in Africa and Middle East. Pediatr Rheumatol Online J. 2021; 19: 166. https://doi.org/10.1186/s12969-021-00650-x.
  12. Barut K, Adrovic A, Sahin S, Kasapcopur O. Juvenile IdiopathicArthritis. Balkan Med J. 2017; 34: 90-101. https://doi.org/10.4274/balkanmedj.2017.0111.
  13. Franca CMP, Sallum AME, Braga ALF, Strufaldi FL, Silva CAA, Farhat SCL. Risk Factors Associated with Juvenile Idiopathic Arthritis: Exposure to Cigarette Smoke and Air Pollution from Pregnancy to Disease Diagnosis. J Rheumatol. 2018; 45: 248-56. https://doi.org/10.3899/jrheum.161500.
  14. Horton DB, Shenoi S. Review of environmental factors and juvenile idiopathic arthritis. Open Access Rheumatol. 2019; 11: 253-67. https://doi.org/10.2147/OARRR.S165916.
  15. Zeft A, Prahalad S, Lefevre S, Clifford B, McNally B, Bohnsack JF, et al. Juvenile idiopathic arthritis and exposure to fine particulate air pollution. Clin Exp Rheumatol. 2009; 27: 877-84.
  16. Vidotto JP, Pereira LA, Braga AL, Silva CA, Sallum AM, Campos LM, et al. Atmospheric pollution: influence on hospital admissions in paediatric rheumatic diseases. Lupus. 2012; 21: 526-33. https://doi.org/10.1177/0961203312437806.
  17. Zeft AS, Prahalad S, Schneider R, Dedeoglu F, Weiss PF, Grom AA, et al. Systemic onset juvenile idiopathic arthritis and exposure to fine particulate air pollution. Clin Exp Rheumatol. 2016;34(5):946-52.
  18. Chiaroni‐Clarke RC, Munro JE, Pezic A, Cobb JE, Akikusa JD, Allen RC, et al. Association of increased sun exposure over the life‐course with a reduced risk of juvenile idiopathic arthritis. Photochemistry and photobiology. 2019;95(3):867-73. https://doi.org/10.1111/php.13045.
  19. Tsai WS, Yang YH, Wang LC, Chiang BL. Abrupt temperature change triggers arthralgia in patients with juvenile rheumatoid arthritis. J Microbiol Immunol Infect. 2006; 39: 465-70.
  20. Feldman BM, Birdi N, Boone JE, Dent PB, Duffy CM, Ellsworth JE, et al. Seasonal onset of systemic-onset juvenile rheumatoid arthritis. J Pediatr. 1996;129(4):513-8. https://doi.org/10.1016/S0022-3476(96)70115-4.
  21. Uziel Y, Pomeranz A, Brik R, Navon P, Mukamel M, Press J, et al. Seasonal variation in systemic onset juvenile rheumatoid arthritis in Israel. J Rheumatol. 1999;26(5):1187-9.
  22. Pineles D, Valente A, Warren B, Peterson MG, Lehman TJ, Moorthy LN. Worldwide incidence and prevalence of pediatric onset systemic lupus erythematosus. Lupus. 2011; 20: 1187-92. https://doi.org/10.1177/0961203311412096.
  23. Barbhaiya M, Costenbader KH. Environmental exposures and the development of systemic lupus erythematosus. Curr Opin Rheumatol. 2016; 28: 497-505. https://doi.org/10.1097/BOR.0000000000000318.
  24. Akhil A, Bansal R, Anupam K, Tandon A, Bhatnagar A. Systemic lupus erythematosus: latest insight into etiopathogenesis. Rheumatol Int. 2023; 43: 1381-93. https://doi.org/10.1007/s00296-023-05346-x.
  25. Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol. 2022; 13: 965941. https://doi.org/10.3389/fimmu.2022.965941.
  26. Stojan G, Kvit A, Curriero F, Petri M. 297 Environmental and atmospheric factors in systemic lupus erythematosus: a regression analysis. Lupus Science & Medicine. 2019; 6: A215-A16. https://doi.org/10.1136/lupus-2019-lsm.297.
  27. Stojan G, Kvit A, Curriero FC, Petri M. A Spatiotemporal Analysis of Organ-Specific Lupus Flares in Relation to Atmospheric Variables and Fine Particulate Matter Pollution. Arthritis Rheumatol. 2020; 72: 1134-42. https://doi.org/10.1002/art.41217.
  28. Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronich S, et al. Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci. 2015; 14: 19-52. https://doi.org/10.1039/c4pp90032d.
  29. Zhao N, Smargiassi A, Jean S, Gamache P, Laouan-Sidi EA, Chen H, et al. Long-term exposure to fine particulate matter and ozone and the onset of systemic autoimmune rheumatic diseases: an open cohort study in Quebec, Canada. Arthritis Res Ther. 2022; 24: 151. https://doi.org/10.1186/s13075-022-02843-5.
  30. Alves AGF, de Azevedo Giacomin MF, Braga ALF, Sallum AME, Pereira LAA, Farhat LC, et al. Influence of air pollution on airway inflammation and disease activity in childhood-systemic lupus erythematosus. Clin Rheumatol. 2018; 37: 683-90. https://doi.org/10.1007/s10067-017-3893-1.
  31. Fernandes EC, Silva CA, Braga AL, Sallum AM, Campos LM, Farhat SC. Exposure to Air Pollutants and Disease Activity in Juvenile-Onset Systemic Lupus Erythematosus Patients. Arthritis Care Res (Hoboken). 2015; 67: 1609-14. https://doi.org/10.1002/acr.22603.
  32. Bernatsky S, Fournier M, Pineau CA, Clarke AE, Vinet E, Smargiassi A. Associations between ambient fine particulate levels and disease activity in patients with systemic lupus erythematosus (SLE). Environ Health Perspect. 2011; 119: 45-9. https://doi.org/10.1289/ehp.1002123.
  33. Chen J, Qu W, Sun L, Chen J, Kong W, Wang F, et al. The relationship of polluted air and drinking water sources with the prevalence of systemic lupus erythematosus: a provincial population-based study. Sci Rep. 2021; 11: 18591. https://doi.org/10.1038/s41598-021-98111-8.
  34. Gara S, Jamil RT, Muse ME, Litaiem N. Juvenile Dermatomyositis. [Updated 2023 Jan 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534236/.
  35. Rosa Neto NS, Goldenstein-Schainberg C. Juvenile dermatomyositis: review and update of the pathogenesis and treatment. Rev Bras Reumatol. 2010; 50: 299-312. https://doi.org/10.1590/S0482-50042010000300010.
  36. Orione MA, Silva CA, Sallum AM, Campos LM, Omori CH, Braga AL,et al. Risk factors for juvenile dermatomyositis: exposure to tobacco and air pollutants during pregnancy. Arthritis Care Res (Hoboken). 2014; 66: 1571-5.https://doi.org/10.1002/acr.22358.
  37. Okada S, Weatherhead E, Targoff IN, Wesley R, Miller FW, International Myositis Collaborative Study G. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum. 2003; 48: 2285-93. https://doi.org/10.1002/art.11090.
  38. Barnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S, Nigel D,et al. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nature Sustainability. 2019; 2: 569-79. https://doi.org/10.1038/s41893-019-0314-2.
  39. Bax CE, Maddukuri S, Ravishankar A, Pappas-Taffer L, Werth VP. Environmental triggers of dermatomyositis: a narrative review. Ann Transl Med. 2021; 9: 434. https://doi.org/10.21037/atm-20-3719.
  40. Mamyrova G, Rider LG, Ehrlich A, Jones O, Pachman LM, Nickeson R, et al. Environmental factors associated with disease flare in juvenile and adult dermatomyositis. Rheumatology (Oxford). 2017; 56: 1342-47. https://doi.org/10.1093/rheumatology/kex162.
  41. Climate Change and Children’s Health. EPA. U.S Environmetal Protection Agency.
  42. Chen C, He YS, Tao SS, Fang Y, Zhang RD, Fang X, et al. Climate change and daily outpatient visits for dermatomyositis in Hefei, China: a time-series study. Environ Sci Pollut Res Int. 2023; 30: 101053-63. https://doi.org/10.1007/s11356-023-29542-1.
  43. Hwang HH, Lim IS, Choi BS, Yi DY. Analysis of seasonal tendencies in pediatric Henoch-Schonlein purpura and comparison with outbreak of infectious diseases. Medicine (Baltimore). 2018; 97: e12217. https://doi.org/10.1097/MD.0000000000012217.
  44. Oni L, Sampath S. Childhood IgA Vasculitis (Henoch Schonlein Purpura)-Advances and Knowledge Gaps. Front Pediatr. 2019; 7: 257. https://doi.org/10.3389/fped.2019.00257.
  45. Roache-Robinson P, Killeen RB, Hotwagner DT. IgA Vasculitis (Henoch-Schönlein Purpura) [Updated 2023 Sep 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537252/.
  46. Sugino H, Sawada Y, Nakamura M. IgA Vasculitis: Etiology, Treatment, Biomarkers and Epigenetic Changes. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms22147538.
  47. Wang JJ, Xu Y, Liu FF, Wu Y, Samadli S, Wu YF, et al. Association of the infectious triggers with childhood Henoch-Schonlein purpura in Anhui province, China. J Infect Public Health. 2020; 13: 110-17. https://doi.org/10.1016/j.jiph.2019.07.004.
  48. Mirsaeidi M, Motahari H, Taghizadeh Khamesi M, Sharifi A, Campos M, Schraufnagel DE. Climate Change and Respiratory Infections. Ann Am Thorac Soc. 2016; 13: 1223-30. https://doi.org/10.1513/AnnalsATS.201511-729PS.
  49. Kim WK, Kim CJ, Yang EM. Risk factors for renal involvement in Henoch-Schonlein purpura. J Pediatr (Rio J). 2021; 97: 646-50. https://doi.org/10.1016/j.jped.2021.01.008.
  50. Kuzma L, Malyszko J, Bachorzewska-Gajewska H, Kralisz P, Dobrzycki S. Exposure to air pollution and renal function. Sci Rep. 2021; 11: 11419. https://doi.org/10.1038/s41598-021-91000-0.
  51. Galeotti C, Kaveri SV, Cimaz R, Kone-Paut I, Bayry J. Predisposing factors, pathogenesis and therapeutic intervention of Kawasaki disease. Drug Discov Today. 2016; 21: 1850-57. https://doi.org/10.1016/j.drudis.2016.08.004.
  52. Rodo X, Ballester J, Curcoll R, Boyard-Micheau J, Borras S, Morgui JA. Revisiting the role of environmental and climate factors on the epidemiology of Kawasaki disease. Ann N Y Acad Sci. 2016; 1382: 84-98. https://doi.org/10.1111/nyas.13201.
  53. Kuo HC. Diagnosis, Progress, and Treatment Update of Kawasaki Disease. Int J Mol Sci. 2023; 24. https://doi.org/10.20944/preprints202308.0766.v1.
  54. Katz G, Wallace ZS. Environmental Triggers for Vasculitis. Rheum Dis Clin North Am. 2022; 48: 875-90. https://doi.org/10.1016/j.rdc.2022.06.008
  55. Low T, McCrindle BW, Mueller B, Fan CS, Somerset E, O’Shea S, et al. Associations between the spatiotemporal distribution of Kawasaki disease and environmental factors: evidence supporting a multifactorial etiologic model. Sci Rep. 2021; 11: 14617. https://doi.org/10.1038/s41598-021-93089-9.
  56. Corinaldesi E, Pavan V, Andreozzi L, Fabi M, Selvini A, Frabboni I, et al. Environmental Factors and Kawasaki Disease Onset in Emilia-Romagna, Italy. Int J Environ Res Public Health. 2020; 17. https://doi.org/10.3390/ijerph17051529.
  57. Fujii F, Egami N, Inoue M, Koga H. Weather condition, air pollutants, and epidemics as factors that potentially influence the development of Kawasaki disease. Sci Total Environ. 2020; 741: 140469. https://doi.org/10.1016/j.scitotenv.2020.140469.
  58. Kwon D, Choe YJ, Kim SY, Chun BC, Choe SA. Ambient Air Pollution and Kawasaki Disease in Korean Children: A Study of the National Health Insurance Claim Data. J Am Heart Assoc. 2022; 11: e024092. https://doi.org/10.1161/JAHA.121.024092.
  59. Zhu Y, Chen R, Liu C, et al. Short-term exposure to ozone may trigger the onset of Kawasaki disease: An individual-level, case-crossover study in East China. Chemosphere. 2024; 349: 140828. https://doi.org/10.1016/j.chemosphere.2023.140828.
  60. Yorifuji T, Tsukahara H, Kashima S, Doi H. Intrauterine and Early Postnatal Exposure to Particulate Air Pollution and Kawasaki Disease: A Nationwide Longitudinal Survey in Japan. J Pediatr. 2018; 193: 147-54 e2. https://doi.org/10.1016/j.jpeds.2017.10.012.
  61. Sonmez HE, Batu ED, Ozen S. Familial Mediterranean fever: current perspectives. J Inflamm Res. 2016; 9: 13-20. https://doi.org/10.2147/JIR.S91352.
  62. Bhatt H, Cascella M. Familial Mediterranean Fever. [Updated 2023 Jul 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan.
  63. Ben-Zvi I, Brandt B, Berkun Y, Lidar M, Livneh A. The relative contribution of environmental and genetic factors to phenotypic variation in familial Mediterranean fever (FMF). Gene. 2012; 491: 260-3. https://doi.org/10.1016/j.gene.2011.10.005.
  64. Ozen S, Aktay N, Lainka E, Duzova A, Bakkaloglu A, Kallinich T. Disease severity in children and adolescents with familial Mediterranean fever: a comparative study to explore environmental effects on a monogenic disease. Ann Rheum Dis. 2009; 68: 246-8. https://doi.org/10.1136/ard.2008.092031.
  65. Korkmaz C, Cansu DU, Cansu GB. Familial Mediterranean fever: the molecular pathways from stress exposure to attacks. Rheumatology (Oxford). 2020; 59: 3611-21. https://doi.org/10.1093/rheumatology/keaa450.
  66. Karadag O, Tufan A, Yazisiz V, et al. The factors considered as trigger for the attacks in patients with familial Mediterranean fever. Rheumatol Int. 2013; 33: 893-7. https://doi.org/10.1007/s00296-012-2453-x.
  67. Parlar K, Ates MB, Onal ME, Bostanci E, Azman FN, Ugurlu S. Factors triggering familial mediterranean fever attacks, do they really exist? Intern Emerg Med. 2024; 19: 1007-13. https://doi.org/10.1007/s11739-024-03576-w.
  68. Avagyan T, Budumyan A, Hayrapetyan A, Tadevosyan A. Influence of some environmental factors on manifestation of familial Mediterranean fever in children: clinical and genetic aspects. Caucaus J Health Sci Public health. 2018; 2: 1-5.
  69. Acer Kasman S, Duruoz MT. Seasonal residual activity in adult familial Mediterranean fever: a longitudinal observational study. Rheumatol Int. 2022; 42: 1573-78. https://doi.org/10.1007/s00296-022-05156-7.

How to cite

1.
Yaman Artunç N, Yalçın SS. Climate change and pediatric rheumatic diseases: a growing concern. Turk J Pediatr Dis [Internet]. 2025 Jul. 28 [cited 2025 Aug. 23];19(4):209-17. Available from: https://turkjpediatrdis.org/article/view/1111